# Structure of Compact Quantum Groups $A_{u}(Q)$ and $B_{u}(Q)$ and their Isomorphism Classification 

Shuzhou Wang

Department of Mathematics
University of Georgia

## 1. The Notion of Quantum Groups

- $G=$ Simple compact Lie group, e.g.

$$
\begin{aligned}
& G=S U(2)=\left\{\left[\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right]: \alpha \bar{\alpha}+\gamma \bar{\gamma}=1, \alpha, \gamma \in \mathbb{C}\right\} . \\
& \boldsymbol{A}=\boldsymbol{C}(\mathbf{G})
\end{aligned}
$$

## 1. The Notion of Quantum Groups

- $G=$ Simple compact Lie group, e.g.

$$
\begin{aligned}
& G=S U(2)=\left\{\left[\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right]: \alpha \bar{\alpha}+\gamma \bar{\gamma}=1, \alpha, \gamma \in \mathbb{C}\right\} . \\
& \boldsymbol{A}=\boldsymbol{C}(\mathbf{G})
\end{aligned}
$$

- Lie group $G \Longleftrightarrow$ Hopf algebra $(A, \Delta, \varepsilon, S)$.


## 1. The Notion of Quantum Groups

- $G=$ Simple compact Lie group, e.g.

$$
\begin{aligned}
& G=S U(2)=\left\{\left[\begin{array}{cc}
\alpha & -\bar{\gamma} \\
\gamma & \bar{\alpha}
\end{array}\right]: \alpha \bar{\alpha}+\gamma \bar{\gamma}=1, \alpha, \gamma \in \mathbb{C}\right\} . \\
& \boldsymbol{A}=\boldsymbol{C}(\mathbf{G})
\end{aligned}
$$

- Lie group $G \Longleftrightarrow$ Hopf algebra $(A, \Delta, \varepsilon, S)$.

$$
\begin{gathered}
\Delta: A \rightarrow A \otimes A, \quad \Delta(f)(s, t)=f(s t) \\
\varepsilon: A \rightarrow \mathbb{C}, \quad \varepsilon(f)=f(e) \\
S: A \rightarrow A, \quad S(f)(t)=f\left(t^{-1}\right)
\end{gathered}
$$

1. The Notion of Quantum Groups (cont.)

Spectacular development in Mid-1980's:
Drinfeld, Jimbo, Woronowicz,

Spectacular development in Mid-1980's:
Drinfeld, Jimbo, Woronowicz,

## Idea of Quantization:

Commuting functions on $G$, e.g. $\alpha, \gamma$,
$\Downarrow$
Non-commuting operators, e.g. $\alpha, \gamma$,
Commutative $C(G) \Longrightarrow$ Noncommutative $C\left(G_{q}\right)$.
$G_{q}=$ quantum group

- Recall Hilbert 5th Problem:

Characterization of Lie groups among topological groups.

- Recall Hilbert 5th Problem:

Characterization of Lie groups among topological groups.

- New Problem:

Characterization of quantum groups among Hopf algebras.

- Recall Hilbert 5th Problem:

Characterization of Lie groups among topological groups.

- New Problem:

Characterization of quantum groups among Hopf algebras.

- Lesson:

Quantums groups = "nice Hopf algebras"
Restrict to such Hopf algebras to obtain nice and deep
theory.

- DEFINITION: A compact matrix quantum group (CMQG) is a pair $G=(A, u)$ of a unital $C^{*}$-algebra $A$ and

$$
u=\left(u_{i j}\right)_{i, j=1}^{n} \in M_{n}(A) \text { satisfying }
$$

- DEFINITION: A compact matrix quantum group (CMQG) is a pair $G=(A, u)$ of a unital $C^{*}$-algebra $A$ and $u=\left(u_{i j}\right)_{i, j=1}^{n} \in M_{n}(A)$ satisfying
(1) $\exists \Delta: A \longrightarrow A \otimes A$ with

$$
\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j}, \quad i, j=1, \cdots, n ;
$$

- DEFINITION: A compact matrix quantum group (CMQG) is a pair $G=(A, U)$ of a unital $C^{*}$-algebra $A$ and $u=\left(u_{i j}\right)_{i, j=1}^{n} \in M_{n}(A)$ satisfying
(1) $\exists \Delta: A \longrightarrow A \otimes A$ with

$$
\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j}, \quad i, j=1, \cdots, n ;
$$

(2) $\exists u^{-1}$ in $M_{n}(A)$ and anti-morphism $S$ on
$\mathcal{A}=*-\operatorname{alg}\left(u_{i j}\right)$ with

$$
S\left(S\left(a^{*}\right)^{*}\right)=a, \quad a \in \mathcal{A} ; \quad S(u)=u^{-1} .
$$

- Note: Equivalent definition of CMQG is obtained if condition (2) is replaced with

$$
\left(2^{\prime}\right) \exists u^{-1} \text { and }\left(u^{t}\right)^{-1} \text { in } M_{n}(A)
$$

- Note: Equivalent definition of CMQG is obtained if condition (2) is replaced with

$$
\left(2^{\prime}\right) \exists u^{-1} \text { and }\left(u^{t}\right)^{-1} \text { in } M_{n}(A)
$$

- There are other equivalent definitions of CMQG

1. The Notion of Quantum Groups (cont.)

Famous Example: $C\left(S U_{q}(2)\right), q \in \mathbb{R}, q \neq 0$

1. The Notion of Quantum Groups (cont.)

Famous Example: $C\left(S U_{q}(2)\right), q \in \mathbb{R}, q \neq 0$
Generators: $\alpha, \gamma$.

Famous Example: $C\left(S U_{q}(2)\right), q \in \mathbb{R}, q \neq 0$
Generators: $\alpha, \gamma$.
Relations: the $2 \times 2$ matrix $u:=\left[\begin{array}{cc}\alpha & -q \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right]$ is unitary,

Famous Example: $C\left(S U_{q}(2)\right), q \in \mathbb{R}, q \neq 0$
Generators: $\alpha, \gamma$.
Relations: the $2 \times 2$ matrix $u:=\left[\begin{array}{cc}\alpha & -q \gamma^{*} \\ \gamma & \alpha^{*}\end{array}\right]$ is unitary, i.e.

$$
\begin{gathered}
\alpha^{*} \alpha+\gamma^{*} \gamma=1, \quad \alpha \alpha^{*}+q^{2} \gamma \gamma^{*}=1 \\
\gamma \gamma^{*}=\gamma^{*} \gamma, \quad \alpha \gamma=q \gamma \alpha, \quad \alpha \gamma^{*}=q \gamma^{*} \alpha
\end{gathered}
$$

1. The Notion of Quantum Groups (cont.)

Facts:

1. The Notion of Quantum Groups (cont.)

Facts:

$$
-\left(u^{t}\right)^{-1}=\left[\begin{array}{cc}
\alpha^{*} & -q^{-1} \gamma \\
q^{2} \gamma^{*} & \alpha
\end{array}\right]
$$

Facts:

- $\left(u^{t}\right)^{-1}=\left[\begin{array}{cc}\alpha^{*} & -q^{-1} \gamma \\ q^{2} \gamma^{*} & \alpha\end{array}\right]$
- Hopf algebra structure same as $C(S U(2))$ :

$$
\begin{aligned}
\Delta\left(u_{i j}\right) & =\sum_{k=1}^{2} u_{i k} \otimes u_{k j}, \quad i, j=1,2 \\
\varepsilon\left(u_{i j}\right) & =\delta_{i j}, \quad i, j=1,2 \\
S(u) & =u^{-1}
\end{aligned}
$$

- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$

- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$

$$
G_{q}^{u}=\text { Twisting of } G_{q}
$$

- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$
$G_{q}^{u}=$ Twisting of $G_{q}$

- Woronowicz's theory: Haar measure, Peter-Weyl, Tannka-Krein, etc.
- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$
$G_{q}^{u}=$ Twisting of $G_{q}$

- Woronowicz's theory: Haar measure, Peter-Weyl,

Tannka-Krein, etc.

- Any other classses of examples besides $G_{q}, G_{q}^{u}$ ?
- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$
$G_{q}^{u}=$ Twisting of $G_{q}$

- Woronowicz's theory: Haar measure, Peter-Weyl,

Tannka-Krein, etc.

- Any other classses of examples besides $G_{q}, G_{q}^{u}$ ?
- Yes: Universal quantum groups $A_{u}(Q)$ and $B_{u}(Q)$,
- $G_{q}=$ Deformation of arbitrary simple compact Lie groups:

Soibelman et al. based on Drinfeld-Jimbo's $U_{q}(\mathfrak{g})$
$G_{q}^{u}=$ Twisting of $G_{q}$

- Woronowicz's theory: Haar measure, Peter-Weyl,

Tannka-Krein, etc.

- Any other classses of examples besides $G_{q}, G_{q}^{u}$ ?
- Yes: Universal quantum groups $A_{u}(Q)$ and $B_{u}(Q)$, quantum permutation groups $A_{\text {aut }}\left(X_{n}\right)$, etc.


## 2. Universal CMQGs $A_{u}(Q)$ and $B_{u}(Q)$

For $u=\left(u_{i j}\right), \bar{u}:=\left(u_{i j}^{*}\right), u^{*}:=\bar{u}^{t} ; Q$ is an $n \times n$ non-singular complex scalar matrix.

## 2. Universal CMQGs $A_{u}(Q)$ and $B_{u}(Q)$

For $u=\left(u_{i j}\right), \bar{u}:=\left(u_{i j}^{*}\right), u^{*}:=\bar{u}^{t} ; Q$ is an $n \times n$ non-singular complex scalar matrix.

$$
A_{u}(Q):=C^{*}\left\{u_{i j}: u^{*}=u^{-1},\left(u^{t}\right)^{-1}=Q \bar{u} Q^{-1}\right\}
$$

## 2. Universal CMQGs $A_{u}(Q)$ and $B_{u}(Q)$

For $u=\left(u_{i j}\right), \bar{u}:=\left(u_{i j}^{*}\right), u^{*}:=\bar{u}^{t} ; Q$ is an $n \times n$ non-singular complex scalar matrix.

$$
\begin{aligned}
& A_{u}(Q):=C^{*}\left\{u_{i j}: u^{*}=u^{-1},\left(u^{t}\right)^{-1}=Q \bar{u} Q^{-1}\right\} \\
& B_{u}(Q):=C^{*}\left\{u_{i j}: u^{*}=u^{-1},\left(u^{t}\right)^{-1}=Q u Q^{-1}\right\}
\end{aligned}
$$

2. $A_{u}(Q)$ and $B_{u}(Q)$ (cont.)

THEOREM 1.
(1) $A_{u}(Q)$ and $B_{u}(Q)$ are CMQGs (in fact quantum automorphism groups).
2. $A_{u}(Q)$ and $B_{u}(Q)$ (cont.)

THEOREM 1.
(1) $A_{u}(Q)$ and $B_{u}(Q)$ are CMQGs (in fact quantum automorphism groups).
(2) Every CMQG is a quantum subgroup of $A_{u}(Q)$ for some
$Q>0 ;$
2. $A_{u}(Q)$ and $B_{u}(Q)$ (cont.)

THEOREM 1.
(1) $A_{u}(Q)$ and $B_{u}(Q)$ are CMQGs (in fact quantum automorphism groups).
(2) Every CMQG is a quantum subgroup of $A_{u}(Q)$ for some
$Q>0$;
Every CMQG with self conjugate fundamental representation is a quantum subgroup of $B_{u}(Q)$ for some $Q$.
2. $A_{u}(Q)$ and $B_{u}(Q)$ (cont.)

- The $C^{*}$-algebras $A_{u}(Q)$ and $B_{u}(Q)$ are non-nuclear (even non-exact) for generic Q's. e.g. $C^{*}\left(F_{n}\right)$ is a quotient of $A_{u}(Q)$ for $Q>0$.

2. $A_{u}(Q)$ and $B_{u}(Q)$ (cont.)

- The $C^{*}$-algebras $A_{u}(Q)$ and $B_{u}(Q)$ are non-nuclear (even non-exact) for generic Q's.
e.g. $C^{*}\left(F_{n}\right)$ is a quotient of $A_{u}(Q)$ for $Q>0$.
- $B_{u}(Q)=C\left(S U_{q}(2)\right)$ for

$$
Q=\left[\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right], q \in \mathbb{R}, q \neq 0
$$

- The $C^{*}$-algebras $A_{u}(Q)$ and $B_{u}(Q)$ are non-nuclear (even non-exact) for generic Q's.
e.g. $C^{*}\left(F_{n}\right)$ is a quotient of $A_{u}(Q)$ for $Q>0$.
- $B_{u}(Q)=C\left(S U_{q}(2)\right)$ for

$$
Q=\left[\begin{array}{cc}
0 & -1 \\
q & 0
\end{array}\right], q \in \mathbb{R}, q \neq 0
$$

- Banica's computed the fusion rings of $A_{u}(Q)$ (for $Q>0$ ) and $B_{u}(Q)$ (for $Q \bar{Q}$ ) in his deep thesis.


## 3. $A_{u}(Q)$ for Positive $Q$

$Q>0$ is called normalized if $\operatorname{Tr}(Q)=\operatorname{Tr}\left(Q^{-1}\right)$.

## 3. $A_{u}(Q)$ for Positive $Q$

$Q>0$ is called normalized if $\operatorname{Tr}(Q)=\operatorname{Tr}\left(Q^{-1}\right)$.
THEOREM 2. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be positive, normalized, with eigen values $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$ and
$q_{1}^{\prime} \geq q_{2}^{\prime} \geq \cdots \geq q_{n^{\prime}}^{\prime}$ respectively.

## 3. $A_{u}(Q)$ for Positive $Q$

$Q>0$ is called normalized if $\operatorname{Tr}(Q)=\operatorname{Tr}\left(Q^{-1}\right)$.
THEOREM 2. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be positive, normalized, with eigen values $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$ and
$q_{1}^{\prime} \geq q_{2}^{\prime} \geq \cdots \geq q_{n^{\prime}}^{\prime}$ respectively.
Then, $A_{u}(Q)$ is isomorphic to $A_{u}\left(Q^{\prime}\right)$ iff,
(i) $n=n^{\prime}$, and

## 3. $A_{u}(Q)$ for Positive $Q$

$Q>0$ is called normalized if $\operatorname{Tr}(Q)=\operatorname{Tr}\left(Q^{-1}\right)$.
THEOREM 2. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be positive, normalized, with eigen values $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$ and
$q_{1}^{\prime} \geq q_{2}^{\prime} \geq \cdots \geq q_{n^{\prime}}^{\prime}$ respectively.
Then, $A_{u}(Q)$ is isomorphic to $A_{u}\left(Q^{\prime}\right)$ iff,
(i) $n=n^{\prime}$, and
(ii) $\left(q_{1}, q_{2}, \cdots, q_{n}\right)=\left(q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{n}^{\prime}\right)$ or

$$
\left(q_{n}^{-1}, q_{n-1}^{-1}, \cdots, q_{1}^{-1}\right)=\left(q_{1}^{\prime}, q_{2}^{\prime}, \cdots, q_{n}^{\prime}\right) .
$$

## 4. $B_{u}(Q)$ with $Q \bar{Q} \in \mathbb{R} I_{n}$

THEOREM 3. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be such that $Q \bar{Q} \in \mathbb{R} I_{n}, Q^{\prime} \overline{Q^{\prime}} \in \mathbb{R} I_{n^{\prime}}$, respectively.

## 4. $B_{u}(Q)$ with $Q \bar{Q} \in \mathbb{R} I_{n}$

THEOREM 3. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be such that $Q \bar{Q} \in \mathbb{R} I_{n}, Q^{\prime} \overline{Q^{\prime}} \in \mathbb{R} I_{n^{\prime}}$, respectively. Then, $B_{u}(Q)$ is isomorphic to $B_{u}\left(Q^{\prime}\right)$ iff,
(i) $n=n^{\prime}$,

## 4. $B_{u}(Q)$ with $Q \bar{Q} \in \mathbb{R} I_{n}$

THEOREM 3. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be such that $Q \bar{Q} \in \mathbb{R} I_{n}, Q^{\prime} \overline{Q^{\prime}} \in \mathbb{R} I_{n^{\prime}}$, respectively. Then, $B_{u}(Q)$ is isomorphic to $B_{u}\left(Q^{\prime}\right)$ iff,
(i) $n=n^{\prime}$, and
(ii) there exist $S \in U(n)$ and $z \in \mathbb{C}^{*}$ such that
$Q=z S^{t} Q^{\prime} S$.

## 4. $B_{u}(Q)$ with $Q \bar{Q} \in \mathbb{R} I_{n}$

THEOREM 3. Let $Q \in G L(n, \mathbb{C})$ and $Q^{\prime} \in G L\left(n^{\prime}, \mathbb{C}\right)$ be such that $Q \bar{Q} \in \mathbb{R} I_{n}, Q^{\prime} \overline{Q^{\prime}} \in \mathbb{R} I_{n^{\prime}}$, respectively. Then, $B_{u}(Q)$ is isomorphic to $B_{u}\left(Q^{\prime}\right)$ iff,
(i) $n=n^{\prime}$, and
(ii) there exist $S \in U(n)$ and $z \in \mathbb{C}^{*}$ such that $Q=z S^{t} Q^{\prime} S$.

Note: The quantum groups $B_{u}(Q)$ are simple in an appropriate sense: cf. S. Wang: "Simple compact quantum groups I", JFA, 256 (2009), 3313-3341.

## 5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

## 5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

Note: $A_{u}(Q)=C(\mathbb{T}), \quad B_{u}(Q)=C^{*}(\mathbb{Z} / 2 \mathbb{Z})$ for $Q \in G L(1, \mathbb{C})$.

## 5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

Note: $A_{u}(Q)=C(\mathbb{T}), \quad B_{u}(Q)=C^{*}(\mathbb{Z} / 2 \mathbb{Z})$ for $Q \in G L(1, \mathbb{C})$.
THEOREM 4. Let $Q \in G L(n, \mathbb{C})$. Then there exists positive matrices $P_{j}$ such that

## 5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

Note: $A_{u}(Q)=C(\mathbb{T}), \quad B_{u}(Q)=C^{*}(\mathbb{Z} / 2 \mathbb{Z})$ for $Q \in G L(1, \mathbb{C})$.
THEOREM 4. Let $Q \in G L(n, \mathbb{C})$. Then there exists positive matrices $P_{j}$ such that

$$
A_{u}(Q) \cong A_{u}\left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right) .
$$

5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

THEOREM 5. Let $Q \in G L(n, \mathbb{C})$. Then there exist positive matrices $P_{i}(i \leq k)$ and matrices $Q_{j}(j \leq I)$ with $Q_{j} \bar{Q}_{j}$ 's are nonzero scalars
5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

THEOREM 5 . Let $Q \in G L(n, \mathbb{C})$. Then there exist positive matrices $P_{i}(i \leq k)$ and matrices $Q_{j}(j \leq I)$ with $Q_{j} \bar{Q}_{j}$ 's are nonzero scalars and that

$$
\begin{aligned}
B_{u}(Q) \cong A_{u}( & \left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right) * \\
& * B_{u}\left(Q_{1}\right) * B_{u}\left(Q_{2}\right) * \cdots * B_{u}\left(Q_{l}\right)
\end{aligned}
$$

5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

THEOREM 5. Let $Q \in G L(n, \mathbb{C})$. Then there exist positive matrices $P_{i}(i \leq k)$ and matrices $Q_{j}(j \leq I)$ with $Q_{j} \bar{Q}_{j}$ 's are nonzero scalars and that

$$
\begin{aligned}
B_{u}(Q) \cong A_{u}( & \left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right) * \\
& * B_{u}\left(Q_{1}\right) * B_{u}\left(Q_{2}\right) * \cdots * B_{u}\left(Q_{l}\right)
\end{aligned}
$$

Note: This is contrary to an earlier belief that $A_{u}\left(P_{i}\right)$ 's do not appear in the decomp.!
5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

COROLLARY of THEOREM 4.
(1). Let $Q=\operatorname{diag}\left(e^{i \theta_{1}} P_{1}, e^{i \theta_{2}} P_{2}, \cdots, e^{i \theta_{k}} P_{k}\right)$, with positive matrices $P_{j}$ and distinct angles $0 \leq \theta_{j}<2 \pi, j=1, \cdots, k, k \geq 1$
5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

COROLLARY of THEOREM 4.
(1). Let $Q=\operatorname{diag}\left(e^{i \theta_{1}} P_{1}, e^{i \theta_{2}} P_{2}, \cdots, e^{i \theta_{k}} P_{k}\right)$, with positive matrices $P_{j}$ and distinct angles $0 \leq \theta_{j}<2 \pi, j=1, \cdots, k, k \geq 1$

Then

$$
A_{u}(Q) \cong A_{u}\left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right)
$$

5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

COROLLARY of THEOREM 4.
(1). Let $Q=\operatorname{diag}\left(e^{i \theta_{1}} P_{1}, e^{i \theta_{2}} P_{2}, \cdots, e^{i \theta_{k}} P_{k}\right)$, with positive matrices $P_{j}$ and distinct angles $0 \leq \theta_{j}<2 \pi, j=1, \cdots, k, k \geq 1$

Then

$$
A_{u}(Q) \cong A_{u}\left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right)
$$

(2). Let $Q \in G L(2, \mathbb{C})$ be a non-normal matrix. Then $A_{u}(Q)=C(\mathbb{T})$.

COROLLARY of THEOREM 4.
(1). Let $Q=\operatorname{diag}\left(e^{i \theta_{1}} P_{1}, e^{i \theta_{2}} P_{2}, \cdots, e^{i \theta_{k}} P_{k}\right)$, with positive matrices $P_{j}$ and distinct angles $0 \leq \theta_{j}<2 \pi, j=1, \cdots, k, k \geq 1$

Then

$$
A_{u}(Q) \cong A_{u}\left(P_{1}\right) * A_{u}\left(P_{2}\right) * \cdots * A_{u}\left(P_{k}\right)
$$

(2). Let $Q \in G L(2, \mathbb{C})$ be a non-normal matrix. Then $A_{u}(Q)=C(\mathbb{T})$.
(3). For $Q \in G L(2, \mathbb{C}), A_{u}(Q)$ is isomorphic to either $C(\mathbb{T})$, or $C(\mathbb{T}) * C(\mathbb{T})$, or $A_{u}(\operatorname{diag}(1, q))$ with $0<q \leq 1$.
5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

## COROLLARY of THEOREM 5.

(1). Let $Q=\operatorname{diag}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ be such that $T_{j} \bar{T}_{j}=\lambda_{j} I_{n_{j}}$, where the $\lambda_{j}$ 's are distinct non-zero real numbers (the $n_{j}$ 's need not be different), $j=1, \cdots, k, k \geq 1$.
5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

COROLLARY of THEOREM 5.
(1). Let $Q=\operatorname{diag}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ be such that $T_{j} \bar{T}_{j}=\lambda_{j} I_{n_{j}}$,
where the $\lambda_{j}$ 's are distinct non-zero real numbers (the $n_{j}$ 's need not be different), $j=1, \cdots, k, k \geq 1$. Then

$$
B_{u}(Q) \cong B_{u}\left(T_{1}\right) * B_{u}\left(T_{2}\right) * \cdots * B_{u}\left(T_{k}\right)
$$

5. $A_{u}(Q)$ and $B_{u}(Q)$ for Arbitrary $Q$

COROLLARY of THEOREM 5.
(1). Let $Q=\operatorname{diag}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ be such that $T_{j} \bar{T}_{j}=\lambda_{j} I_{n_{j}}$, where the $\lambda_{j}$ 's are distinct non-zero real numbers (the $n_{j}$ 's need not be different), $j=1, \cdots, k, k \geq 1$. Then

$$
B_{u}(Q) \cong B_{u}\left(T_{1}\right) * B_{u}\left(T_{2}\right) * \cdots * B_{u}\left(T_{k}\right) .
$$

(2). Let $Q=\left[\begin{array}{cc}0 & T \\ q \bar{T}^{-1} & 0\end{array}\right]$, where $T \in G L(n, \mathbb{C})$ and $q$ is a complex but non-real number.

## COROLLARY of THEOREM 5.

(1). Let $Q=\operatorname{diag}\left(T_{1}, T_{2}, \cdots, T_{k}\right)$ be such that $T_{j} \bar{T}_{j}=\lambda_{j} I_{n_{j}}$, where the $\lambda_{j}$ 's are distinct non-zero real numbers (the $n_{j}$ 's need not be different), $j=1, \cdots, k, k \geq 1$. Then

$$
B_{u}(Q) \cong B_{u}\left(T_{1}\right) * B_{u}\left(T_{2}\right) * \cdots * B_{u}\left(T_{k}\right)
$$

(2). Let $Q=\left[\begin{array}{cc}0 & T \\ q \bar{T}^{-1} & 0\end{array}\right]$, where $T \in G L(n, \mathbb{C})$ and $q$ is a complex but non-real number. Then $B_{u}(Q)$ is isomorphic to $A_{u}\left(|T|^{2}\right)$.

## 6. Important Related Work

A Conceptual Breakthrough:

## 6. Important Related Work

A Conceptual Breakthrough:

Debashish Goswami used $A_{u}(Q)$ to prove the existence of quantum isometry groups for very general classes of noncommutative spaces in the sense of Connes.
6. Important Related Work (cont.)

## Banica's Fusion Theorem 1:

6. Important Related Work (cont.)

## Banica's Fusion Theorem 1:

The irreducible representations $\pi_{x}$ of the quantum group $A_{u}(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$,

## Banica's Fusion Theorem 1:

The irreducible representations $\pi_{x}$ of the quantum group $A_{u}(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$, where $\mathbb{N} * \mathbb{N}$ is the free monoid with generators $\alpha$ and $\beta$ and anti-multiplicative involution $\bar{\alpha}=\beta$, and the classes of $u, \bar{u}$ are $\alpha, \beta$ respectively.

## Banica's Fusion Theorem 1:

The irreducible representations $\pi_{x}$ of the quantum group $A_{u}(Q)$ are parameterized by $x \in \mathbb{N} * \mathbb{N}$, where $\mathbb{N} * \mathbb{N}$ is the free monoid with generators $\alpha$ and $\beta$ and anti-multiplicative involution $\bar{\alpha}=\beta$, and the classes of $u, \bar{u}$ are $\alpha, \beta$ respectively. With this parametrization, one has the fusion rules

$$
\pi_{x} \otimes \pi_{y}=\sum_{x=a g, \bar{g} b=y} \pi_{a b}
$$

6. Important Related Work (cont.)

## Banica's Fusion Theorem 2:

6. Important Related Work (cont.)

## Banica's Fusion Theorem 2:

The irreducible representations $\pi_{k}$ of the quantum group $B_{u}(Q)$ are parameterized by $k \in \mathbb{Z}_{+}=\{0,1,2, \cdots\}$,
6. Important Related Work (cont.)

## Banica's Fusion Theorem 2:

The irreducible representations $\pi_{k}$ of the quantum group $B_{u}(Q)$ are parameterized by $k \in \mathbb{Z}_{+}=\{0,1,2, \cdots\}$, and one has the fusion rules

$$
\pi_{k} \otimes \pi_{I}=\pi_{|k-l|} \oplus \pi_{|k-I|+2} \oplus \cdots \oplus \pi_{k+l-2} \oplus \pi_{k+l}
$$

## 7. Open Problems

- (1) Construct explicit models of irreducible representations $\pi_{x}(x \in \mathbb{N} * \mathbb{N})$ of the quantum groups $A_{u}(Q)$ for positive $Q>0$.


## 7. Open Problems

- (1) Construct explicit models of irreducible representations $\pi_{x}(x \in \mathbb{N} * \mathbb{N})$ of the quantum groups $A_{u}(Q)$ for positive $Q>0$.
- (2) Construct explicit models of irreducible representations $\pi_{k}\left(k \in \mathbb{Z}_{+}\right)$of the quantum groups $B_{u}(Q)$ for $Q$ with $Q \bar{Q}= \pm 1$.

THANKS FOR YOUR ATTENTION!

